

Virginia d'Emilio

Cardiff University

Gravitational Waves Astrophysics

Measuring the properties of binary black holes

Education and Background:	Data Intensive Skills and interests:
I am graduated in July 2018 from Royal	I mainly work in Linux on our computing cluster
Holloway University of London with a first class	(SuperComputingWales) and in Python within
MSci degree in Astrophysics.	the Anaconda environment and I am a regular
	user of
My research project:	• pandas
iny research projecti	sci-kit learn
I work as part of the LIGO-Virgo (LVC) Scientific	• numpy
Collaboration on data analyis and parameter	seaborn
estimation of gravitational waves sources, such	My work is under version control on my GitHub
as black holes and neutron stars binaries. As a	page and GitLab, which I use as part of the LVC
member of a big collaboration, my work is	collaboration. I am familiar with good coding
always available to my colleagues and I often	practices, such as unit testing and writing
work on new problems within the field.	documentation with <i>sphynx</i> .
During the past few months I've been working	
on a package (based on TensorFlow) to	I use stochatic inference techniques in my day-
reconstruct high-dimensional, complex	to-day research, from LVC's observing run
probability distribution functions using	duties to testing our collaboration's new
gaussian processes (gp). The gravitational	inference code <u>bilby</u> and documenting our new
waves applications for this interpolation	Parallel Tempering MCMC code (<u>PTMCMC</u>).
technique are two-fold: speeding up the	
parameter estimation of gravitational-waves	I communicate my results using various tools:
sources (predicting good jump-proposals for	 LaTeX (for papers/report writing)
MCMC sampling); cheaply generating a large	• Tableau
number of posterior distribution of binary	Arviz
black hole (or binary neutron stars) parameters	
in order to test theoretical models of black	I am interested in:
hole populations in the Universe (Bayesian	Natural Language Processing
hierarchical inference).	Bayesian Optimisation
	 Gaussian Process Regression

Future goals and desires:

My goal is to complete my PhD and move to the industry sector. My desire would be to continue doing research (in machine learning) outside of Academia, but I'm open to other possibilities.